Selecting the Perfect Flora for Your Las Vegas Landscape
Desert Landscaping For Side Yards Las Vegas
Selecting the perfect flora for your Las Vegas landscape might seem like an uphill task, but its not! Best vegas landscapers Nevada. Its all about understanding the climate, soil, and available resources. Once youve got these down, picking the right plants can be a fun and creative endeavor.
But first, lets be clear! Las Vegas isnt just desert and dust. Its a city with a diverse ecosystem and a range of microclimates. So, dont limit yourself to cacti and succulents (although theyre great choices too).
Now, what you mustnt do is select plants without considering the Vegas climate.
Selecting the Perfect Flora for Your Las Vegas Landscape - Rock Garden Installation Las Vegas
Landscape Lighting Las Vegas
Eco Landscaping Professionals Las Vegas
Minimalist Backyard Layout Las Vegas
Its no secret that Vegas can get hot, real hot! But did you know, it can also get pretty cold in the winter months? So, you need to choose plants that can survive both extremes.
Take the Desert Marigold, for instance. Its a hardy plant that can withstand high temperatures, but it doesnt just keel over when winter comes. Its also low maintenance, which is good if youre not the type who likes getting their hands dirty.
Ah, but dont forget about water usage! We cant ignore the fact that Vegas is in a desert, so water is a precious resource. Therefore, you should consider plants that dont require a lot of it. Plants like the Red Yucca or the Desert Spoon are excellent choices.
Selecting the Perfect Flora for Your Las Vegas Landscape - Rock Garden Installation Las Vegas
Desert Landscaping For Side Yards Las Vegas
Water Smart Landscaping Las Vegas
Rock Garden Installation Las Vegas
Theyre native to the region, can withstand the heat, and wont guzzle up all your water.
Another point to remember is the soil. Vegas soil isnt exactly what youd call rich.
Selecting the Perfect Flora for Your Las Vegas Landscape - Water Smart Landscaping Las Vegas
Landscape Planting Las Vegas
Gravel Driveway Landscaping Las Vegas
Turf And Stone Combination Las Vegas
Its kind of sandy, kind of rocky, but hey, that doesnt mean you cant have a beautiful garden! There are plenty of plants that thrive in this type of soil. The Blue Palo Verde, for example, is a tree that loves sandy soil. Its also drought-tolerant, which is an added bonus.
So, you see, its not that hard to select the perfect flora for your Las Vegas landscape. You just need to understand the conditions, be mindful of resources, and choose accordingly. So, get out there and start planting. Your perfect Vegas garden is just a few steps away!
Oh, one last thing, dont be afraid to ask for help. There are plenty of local nurseries and botanical centers that can give you advice. After all, were all in this together, right? So, happy planting!
Science of relationships between ecological processes in the environment and particular ecosystems
Land cover surrounding Madison, Wisconsin. Fields are colored yellow and brown and urban surfaces are colored red.Impervious surfaces surrounding Madison, WisconsinCanopy cover surrounding Madison, Wisconsin
Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy.[1][2][3] Landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.[4]
As a highly interdisciplinary field in systems science, landscape ecology integrates biophysical and analytical approaches with humanistic and holistic perspectives across the natural sciences and social sciences. Landscapes are spatially heterogeneous geographic areas characterized by diverse interacting patches or ecosystems, ranging from relatively natural terrestrial and aquatic systems such as forests, grasslands, and lakes to human-dominated environments including agricultural and urban settings.[2][5][6]
The most salient characteristics of landscape ecology are its emphasis on the relationship among pattern, process and scales, and its focus on broad-scale ecological and environmental issues. These necessitate the coupling between biophysical and socioeconomic sciences. Key research topics in landscape ecology include ecological flows in landscape mosaics, land use and land cover change, scaling, relating landscape pattern analysis with ecological processes, and landscape conservation and sustainability.[7] Landscape ecology also studies the role of human impacts on landscape diversity in the development and spreading of new human pathogens that could trigger epidemics.[8][9]
The German term Landschaftsökologie – thus landscape ecology – was coined by German geographerCarl Troll in 1939.[10] He developed this terminology and many early concepts of landscape ecology as part of his early work, which consisted of applying aerial photograph interpretation to studies of interactions between environment and vegetation.
Heterogeneity is the measure of how parts of a landscape differ from one another. Landscape ecology looks at how this spatial structure affects organism abundance at the landscape level, as well as the behavior and functioning of the landscape as a whole. This includes studying the influence of pattern, or the internal order of a landscape, on process, or the continuous operation of functions of organisms.[11] Landscape ecology also includes geomorphology as applied to the design and architecture of landscapes.[12]Geomorphology is the study of how geological formations are responsible for the structure of a landscape.
One central landscape ecology theory originated from MacArthur & Wilson'sThe Theory of Island Biogeography. This work considered the biodiversity on islands as the result of competing forces of colonization from a mainland stock and stochasticextinction. The concepts of island biogeography were generalized from physical islands to abstract patches of habitat by Levins' metapopulation model (which can be applied e.g. to forest islands in the agricultural landscape[13]). This generalization spurred the growth of landscape ecology by providing conservation biologists a new tool to assess how habitat fragmentation affects population viability. Recent growth of landscape ecology owes much to the development of geographic information systems (GIS)[14] and the availability of large-extent habitat data (e.g. remotely sensed datasets).
Landscape ecology developed in Europe from historical planning on human-dominated landscapes. Concepts from general ecology theory were integrated in North America.[when?] While general ecology theory and its sub-disciplines focused on the study of more homogenous, discrete community units organized in a hierarchical structure (typically as ecosystems, populations, species, and communities), landscape ecology built upon heterogeneity in space and time. It frequently included human-caused landscape changes in theory and application of concepts.[15]
By 1980, landscape ecology was a discrete, established discipline. It was marked by the organization of the International Association for Landscape Ecology (IALE) in 1982. Landmark book publications defined the scope and goals of the discipline, including Naveh and Lieberman[16] and Forman and Godron.[17][18] Forman[6] wrote that although study of "the ecology of spatial configuration at the human scale" was barely a decade old, there was strong potential for theory development and application of the conceptual framework.
Today, theory and application of landscape ecology continues to develop through a need for innovative applications in a changing landscape and environment. Landscape ecology relies on advanced technologies such as remote sensing, GIS, and models. There has been associated development of powerful quantitative methods to examine the interactions of patterns and processes.[5] An example would be determining the amount of carbon present in the soil based on landform over a landscape, derived from GIS maps, vegetation types, and rainfall data for a region. Remote sensing work has been used to extend landscape ecology to the field of predictive vegetation mapping, for instance by Janet Franklin.
Nowadays, at least six different conceptions of landscape ecology can be identified: one group tending toward the more disciplinary concept of ecology (subdiscipline of biology; in conceptions 2, 3, and 4) and another group—characterized by the interdisciplinary study of relations between human societies and their environment—inclined toward the integrated view of geography (in conceptions 1, 5, and 6):[19]
Interdisciplinary analysis of subjectively defined landscape units (e.g. Neef School[20][21]): Landscapes are defined in terms of uniformity in land use. Landscape ecology explores the landscape's natural potential in terms of functional utility for human societies. To analyse this potential, it is necessary to draw on several natural sciences.
Topological ecology at the landscape scale[22][23] 'Landscape' is defined as a heterogeneous land area composed of a cluster of interacting ecosystems (woods, meadows, marshes, villages, etc.) that is repeated in similar form throughout. It is explicitly stated that landscapes are areas at a kilometres wide human scale of perception, modification, etc. Landscape ecology describes and explains the landscapes' characteristic patterns of ecosystems and investigates the flux of energy, mineral nutrients, and species among their component ecosystems, providing important knowledge for addressing land-use issues.
Organism-centered, multi-scale topological ecology (e.g. John A. Wiens[24][25]): Explicitly rejecting views expounded by Troll, Zonneveld, Naveh, Forman & Godron, etc., landscape and landscape ecology are defined independently of human perceptions, interests, and modifications of nature. 'Landscape' is defined – regardless of scale – as the 'template' on which spatial patterns influence ecological processes. Not humans, but rather the respective species being studied is the point of reference for what constitutes a landscape.
Topological ecology at the landscape level of biological organisation (e.g. Urban et al.[26]): On the basis of ecological hierarchy theory, it is presupposed that nature is working at multiple scales and has different levels of organisation which are part of a rate-structured, nested hierarchy. Specifically, it is claimed that, above the ecosystem level, a landscape level exists which is generated and identifiable by high interaction intensity between ecosystems, a specific interaction frequency and, typically, a corresponding spatial scale. Landscape ecology is defined as ecology that focuses on the influence exerted by spatial and temporal patterns on the organisation of, and interaction among, functionally integrated multispecies ecosystems.
Analysis of social-ecological systems using the natural and social sciences and humanities (e.g. Leser;[27] Naveh;[28][29] Zonneveld[30]): Landscape ecology is defined as an interdisciplinary super-science that explores the relationship between human societies and their specific environment, making use of not only various natural sciences, but also social sciences and humanities. This conception is grounded in the assumption that social systems are linked to their specific ambient ecological system in such a way that both systems together form a co-evolutionary, self-organising unity called 'landscape'. Societies' cultural, social and economic dimensions are regarded as an integral part of the global ecological hierarchy, and landscapes are claimed to be the manifest systems of the 'total human ecosystem' (Naveh) which encompasses both the physical ('geospheric') and mental ('noospheric') spheres.
Ecology guided by cultural meanings of lifeworldly landscapes (frequently pursued in practice[31] but not defined, but see, e.g., Hard;[32] Trepl[19]): Landscape ecology is defined as ecology that is guided by an external aim, namely, to maintain and develop lifeworldlylandscapes. It provides the ecological knowledge necessary to achieve these goals. It investigates how to sustain and develop those populations and ecosystems which (i) are the material 'vehicles' of lifeworldly, aesthetic and symbolic landscapes and, at the same time, (ii) meet societies' functional requirements, including provisioning, regulating, and supporting ecosystem services. Thus landscape ecology is concerned mainly with the populations and ecosystems which have resulted from traditional, regionally specific forms of land use.
Some research programmes of landscape ecology theory, namely those standing in the European tradition, may be slightly outside of the "classical and preferred domain of scientific disciplines" because of the large, heterogeneous areas of study. However, general ecology theory is central to landscape ecology theory in many aspects. Landscape ecology consists of four main principles: the development and dynamics of spatial heterogeneity, interactions and exchanges across heterogeneous landscapes, influences of spatial heterogeneity on biotic and abiotic processes, and the management of spatial heterogeneity. The main difference from traditional ecological studies, which frequently assume that systems are spatially homogenous, is the consideration of spatial patterns.[33]
Landscape ecology not only created new terms, but also incorporated existing ecological terms in new ways. Many of the terms used in landscape ecology are as interconnected and interrelated as the discipline itself.
Certainly, 'landscape' is a central concept in landscape ecology. It is, however, defined in quite different ways. For example:[19]Carl Troll conceives of landscape not as a mental construct but as an objectively given 'organic entity', a harmonic individuum of space.[34]Ernst Neef[20][21] defines landscapes as sections within the uninterrupted earth-wide interconnection of geofactors which are defined as such on the basis of their uniformity in terms of a specific land use, and are thus defined in an anthropocentric and relativistic way. According to Richard Forman and Michel Godron,[22] a landscape is a heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in similar form throughout, whereby they list woods, meadows, marshes and villages as examples of a landscape's ecosystems, and state that a landscape is an area at least a few kilometres wide. John A. Wiens[24][25] opposes the traditional view expounded by Carl Troll, Isaak S. Zonneveld, Zev Naveh, Richard T. T. Forman/Michel Godron and others that landscapes are arenas in which humans interact with their environments on a kilometre-wide scale; instead, he defines 'landscape'—regardless of scale—as "the template on which spatial patterns influence ecological processes".[25][35] Some define 'landscape' as an area containing two or more ecosystems in close proximity.[15]
Scale and heterogeneity (incorporating composition, structure, and function)
A main concept in landscape ecology is scale. Scale represents the real world as translated onto a map, relating distance on a map image and the corresponding distance on earth.[36] Scale is also the spatial or temporal measure of an object or a process,[33] or amount of spatial resolution.[6] Components of scale include composition, structure, and function, which are all important ecological concepts. Applied to landscape ecology, composition refers to the number of patch types (see below) represented on a landscape and their relative abundance. For example, the amount of forest or wetland, the length of forest edge, or the density of roads can be aspects of landscape composition. Structure is determined by the composition, the configuration, and the proportion of different patches across the landscape, while function refers to how each element in the landscape interacts based on its life cycle events.[33]Pattern is the term for the contents and internal order of a heterogeneous area of land.[17]
A landscape with structure and pattern implies that it has spatial heterogeneity, or the uneven distribution of objects across the landscape.[6] Heterogeneity is a key element of landscape ecology that separates this discipline from other branches of ecology. Landscape heterogeneity is able to quantify with agent-based methods as well.[37]
Patch, a term fundamental to landscape ecology, is defined as a relatively homogeneous area that differs from its surroundings.[6] Patches are the basic unit of the landscape that change and fluctuate, a process called patch dynamics. Patches have a definite shape and spatial configuration, and can be described compositionally by internal variables such as number of trees, number of tree species, height of trees, or other similar measurements.[6]
Matrix is the "background ecological system" of a landscape with a high degree of connectivity. Connectivity is the measure of how connected or spatially continuous a corridor, network, or matrix is.[6] For example, a forested landscape (matrix) with fewer gaps in forest cover (open patches) will have higher connectivity. Corridors have important functions as strips of a particular type of landscape differing from adjacent land on both sides.[6] A network is an interconnected system of corridors while mosaic describes the pattern of patches, corridors, and matrix that form a landscape in its entirety.[6]
Landscape patches have a boundary between them which can be defined or fuzzy.[15] The zone composed of the edges of adjacent ecosystems is the boundary.[6]Edge means the portion of an ecosystem near its perimeter, where influences of the adjacent patches can cause an environmental difference between the interior of the patch and its edge. This edge effect includes a distinctive species composition or abundance.[6] For example, when a landscape is a mosaic of perceptibly different types, such as a forest adjacent to a grassland, the edge is the location where the two types adjoin. In a continuous landscape, such as a forest giving way to open woodland, the exact edge location is fuzzy and is sometimes determined by a local gradient exceeding a threshold, such as the point where the tree cover falls below thirty-five percent.[33]
A type of boundary is the ecotone, or the transitional zone between two communities.[12] Ecotones can arise naturally, such as a lakeshore, or can be human-created, such as a cleared agricultural field from a forest.[12] The ecotonal community retains characteristics of each bordering community and often contains species not found in the adjacent communities. Classic examples of ecotones include fencerows, forest to marshlands transitions, forest to grassland transitions, or land-water interfaces such as riparian zones in forests. Characteristics of ecotones include vegetational sharpness, physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal species, spatial mass effect, and species richness higher or lower than either side of the ecotone.[38]
An ecocline is another type of landscape boundary, but it is a gradual and continuous change in environmental conditions of an ecosystem or community. Ecoclines help explain the distribution and diversity of organisms within a landscape because certain organisms survive better under certain conditions, which change along the ecocline. They contain heterogeneous communities which are considered more environmentally stable than those of ecotones.[39] An ecotope is a spatial term representing the smallest ecologically distinct unit in mapping and classification of landscapes.[6] Relatively homogeneous, they are spatially explicit landscape units used to stratify landscapes into ecologically distinct features. They are useful for the measurement and mapping of landscape structure, function, and change over time, and to examine the effects of disturbance and fragmentation.
Disturbance is an event that significantly alters the pattern of variation in the structure or function of a system. Fragmentation is the breaking up of a habitat, ecosystem, or land-use type into smaller parcels.[6] Disturbance is generally considered a natural process. Fragmentation causes land transformation, an important process in landscapes as development occurs.
An important consequence of repeated, random clearing (whether by natural disturbance or human activity) is that contiguous cover can break down into isolated patches. This happens when the area cleared exceeds a critical level, which means that landscapes exhibit two phases: connected and disconnected.[40]
Landscape ecology theory stresses the role of human impacts on landscape structures and functions. It also proposes ways for restoring degraded landscapes.[16] Landscape ecology explicitly includes humans as entities that cause functional changes on the landscape.[15] Landscape ecology theory includes the landscape stability principle, which emphasizes the importance of landscape structural heterogeneity in developing resistance to disturbances, recovery from disturbances, and promoting total system stability.[17] This principle is a major contribution to general ecological theories which highlight the importance of relationships among the various components of the landscape.
Integrity of landscape components helps maintain resistance to external threats, including development and land transformation by human activity.[5] Analysis of land use change has included a strongly geographical approach which has led to the acceptance of the idea of multifunctional properties of landscapes.[18] There are still calls for a more unified theory of landscape ecology due to differences in professional opinion among ecologists and its interdisciplinary approach (Bastian 2001).
An important related theory is hierarchy theory, which refers to how systems of discrete functional elements operate when linked at two or more scales. For example, a forested landscape might be hierarchically composed of drainage basins, which in turn are composed of local ecosystems, which are in turn composed of individual trees and gaps.[6] Recent theoretical developments in landscape ecology have emphasized the relationship between pattern and process, as well as the effect that changes in spatial scale has on the potential to extrapolate information across scales.[33] Several studies suggest that the landscape has critical thresholds at which ecological processes will show dramatic changes, such as the complete transformation of a landscape by an invasive species due to small changes in temperature characteristics which favor the invasive's habitat requirements.[33]
Developments in landscape ecology illustrate the important relationships between spatial patterns and ecological processes. These developments incorporate quantitative methods that link spatial patterns and ecological processes at broad spatial and temporal scales. This linkage of time, space, and environmental change can assist managers in applying plans to solve environmental problems.[5] The increased attention in recent years on spatial dynamics has highlighted the need for new quantitative methods that can analyze patterns, determine the importance of spatially explicit processes, and develop reliable models.[33]Multivariate analysis techniques are frequently used to examine landscape level vegetation patterns. Studies use statistical techniques, such as cluster analysis, canonical correspondence analysis (CCA), or detrended correspondence analysis (DCA), for classifying vegetation. Gradient analysis is another way to determine the vegetation structure across a landscape or to help delineate critical wetland habitat for conservation or mitigation purposes (Choesin and Boerner 2002).[41]
Climate change is another major component in structuring current research in landscape ecology.[42] Ecotones, as a basic unit in landscape studies, may have significance for management under climate change scenarios, since change effects are likely to be seen at ecotones first because of the unstable nature of a fringe habitat.[38] Research in northern regions has examined landscape ecological processes, such as the accumulation of snow, melting, freeze-thaw action, percolation, soil moisture variation, and temperature regimes through long-term measurements in Norway.[43] The study analyzes gradients across space and time between ecosystems of the central high mountains to determine relationships between distribution patterns of animals in their environment. Looking at where animals live, and how vegetation shifts over time, may provide insight into changes in snow and ice over long periods of time across the landscape as a whole.
Other landscape-scale studies maintain that human impact is likely the main determinant of landscape pattern over much of the globe.[44][45] Landscapes may become substitutes for biodiversity measures because plant and animal composition differs between samples taken from sites within different landscape categories. Taxa, or different species, can "leak" from one habitat into another, which has implications for landscape ecology. As human land use practices expand and continue to increase the proportion of edges in landscapes, the effects of this leakage across edges on assemblage integrity may become more significant in conservation. This is because taxa may be conserved across landscape levels, if not at local levels.[46]
Land change modeling is an application of landscape ecology designed to predict future changes in land use. Land change models are used in urban planning, geography, GIS, and other disciplines to gain a clear understanding of the course of a landscape.[47] In recent years, much of the Earth's land cover has changed rapidly, whether from deforestation or the expansion of urban areas.[48]
Landscape ecology has been incorporated into a variety of ecological subdisciplines. For example, it is closely linked to land change science, the interdisciplinary of land use and land cover change and their effects on surrounding ecology. Another recent development has been the more explicit consideration of spatial concepts and principles applied to the study of lakes, streams, and wetlands in the field of landscape limnology. Seascape ecology is a marine and coastal application of landscape ecology.[49] In addition, landscape ecology has important links to application-oriented disciplines such as agriculture and forestry. In agriculture, landscape ecology has introduced new options for the management of environmental threats brought about by the intensification of agricultural practices. Agriculture has always been a strong human impact on ecosystems.[18]
In forestry, from structuring stands for fuelwood and timber to ordering stands across landscapes to enhance aesthetics, consumer needs have affected conservation and use of forested landscapes. Landscape forestry provides methods, concepts, and analytic procedures for landscape forestry.[50] Landscape ecology has been cited as a contributor to the development of fisheries biology as a distinct biological science discipline,[51] and is frequently incorporated in study design for wetland delineation in hydrology.[39] It has helped shape integrated landscape management.[52] Lastly, landscape ecology has been very influential for progressing sustainability science and sustainable development planning. For example, a recent study assessed sustainable urbanization across Europe using evaluation indices, country-landscapes, and landscape ecology tools and methods.[53]
Landscape ecology has also been combined with population genetics to form the field of landscape genetics, which addresses how landscape features influence the population structure and gene flow of plant and animal populations across space and time[54] and on how the quality of intervening landscape, known as "matrix", influences spatial variation.[55] After the term was coined in 2003, the field of landscape genetics had expanded to over 655 studies by 2010,[56] and continues to grow today. As genetic data has become more readily accessible, it is increasingly being used by ecologists to answer novel evolutionary and ecological questions,[57] many with regard to how landscapes effect evolutionary processes, especially in human-modified landscapes, which are experiencing biodiversity loss.[58]
^Troll C (1939). "Luftbildplan und ökologische Bodenforschung" [Aerial photography and ecological studies of the earth]. Zeitschrift der Gesellschaft für Erdkunde (in German). Berlin: 241–298.
^Turner MG (1989). "Landscape ecology: the effect of pattern on process". Annual Review of Ecology and Systematics. 20: 171–197. doi:10.1146/annurev.es.20.110189.001131.
^ abcAllaby M (1998). Oxford Dictionary of Ecology. New York, NY: Oxford University Press.
^Banaszak J, ed. (2000). Ecology of Forest Islands. Bydgoszcz, Poland: Bydgoszcz University Press. p. 313.
^ abcKirchhoff T, Trepl L, Vicenzotti V (February 2013). "What is landscape ecology? An analysis and evaluation of six different conceptions". Landscape Research. 38 (1): 33–51. doi:10.1080/01426397.2011.640751. S2CID145421450. All the following quotations and descriptions come from this source.
^ abNeef E (1967). Die theoretischen Grundlagen der Landschaftslehre [The theoretical basics of landscape science] (in German). Gotha: Haack.
^ abHaase G (1990). "Approaches to, and methods of landscape diagnosis as a basis of landscape planning and landscape management". Ekológia. 9 (1): 31–44.
^ abForman RT, Godron M (November 1981). "Patches and structural components for a landscape ecology". BioScience. 31 (10): 733–40. doi:10.2307/1308780. JSTOR1308780.
^Forman RT, Godron M (1986). Landscape ecology. NY: Wiley.
^ abWiens JA, Milne BT (December 1989). "Scaling of 'landscapes' in landscape ecology, or, landscape ecology from a beetle's perspective". Landscape Ecology. 3 (2): 87–96. doi:10.1007/BF00131172. S2CID15683804.
^ abcWiens JA (1999). "The science and practice of landscape ecology.". In Klopatek JM, Gardner RH (eds.). Landscape ecological analyses: Issues and applications. NY: Springer. pp. 371–383.
^Leser H (1991). Landschaftsökologie. Ansatz, Modelle, Methodik, Anwendung. Stuttgart: Ulmer.
^Naveh Z, Lieberman AS (1984). Landscape ecology. Theory and application. NY: Springer.
^Naveh N (2000). "What is holistic landscape ecology? A conceptual introduction". Landscape and Urban Planning. 50 (1–3): 7–26. doi:10.1016/S0169-2046(00)00077-3.
^Zonneveld IS (1995). Land ecology: an introduction to landscape ecology as a base for land evaluation, land management and conservation. Amsterdam: SPB.
^However, not always under the designation 'landscape ecology', but as part of landscape stewardship, landscape architecture and, first and foremost, environmental or urban and landscape planning.
^Hard G (1973). Die Geographie. Eine wissenschaftstheoretische Einführung. Berlin: deGruyter. pp. 92–95.
^ abcdefgTurner MG, Gardner RH, eds. (1991). Quantitative Methods in Landscape Ecology. New York, NY, USA: Springer-Verlag.
^Troll C (2007). "The geographic landscape and its investigation.". In Wiens JA, Moss MR, Turner MG, Mladenoff DJ (eds.). Foundation papers in landscape ecology. New York: Columbia University Press. pp. 71–101. First published as: Troll C (1950). "Die geographische Landschaft und ihre Erforschung". Studium Generale. Vol. 3. pp. 163–181. doi:10.1007/978-3-662-38240-0_20. ISBN978-3-662-37475-7. cite book: ISBN / Date incompatibility (help)
^Wiens JA (2005). "Toward a unified landscape ecology". In Wiens JA, Moss MR (eds.). Issues and perspectives in landscape ecology. Cambridge: Cambridge University Press. pp. 365–373.
^Malczewski J (1999). GIS and Multicriteria Decision Analysis. New York, NY, USA: John Wiley and Sons, Inc.
^Lyon J, Sagers CL (September 1998). "Structure of herbaceous plant assemblages in a forested riparian landscape". Plant Ecology. 138 (1): 1–6. doi:10.1023/A:1009705912710. S2CID28628830.
^Ochoa-Hueso R, Delgado-Baquerizo M, King PT, Benham M, Arca V, Power SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009. hdl:10261/336676. S2CID92606851.
^Shaker RR (September 2015). "The well-being of nations: an empirical assessment of sustainable urbanization for Europe". International Journal of Sustainable Development & World Ecology. 22 (5): 375–87. doi:10.1080/13504509.2015.1055524. S2CID154904536.
^Manel S, Schwartz MK, Luikart G, Taberlet P (April 2003). "Landscape genetics: combining landscape ecology and population genetics". Trends in Ecology & Evolution. 18 (4): 189–197. doi:10.1016/S0169-5347(03)00008-9. S2CID2984426.
Landscape engineering is the application of maths and science to shape land and waterscapes. It can also be referred to as eco-friendly engineering, yet the style experts best understood for landscape design are landscape engineers. Landscape engineering is the interdisciplinary application of design and various other used sciences to the style and production of anthropogenic landscapes. It differs from, yet accepts standard reclamation. It consists of scientific disciplines: agronomy, pathology, ecology, forestry, geology, geochemistry, hydrogeology, and wildlife biology. It also draws upon used scientific researches: agricultural & & horticultural sciences, design geomorphology, landscape design, and mining, geotechnical, and civil, farming & & irrigation design. Landscape engineering improves the design toughness of proclaiming goals, determining preliminary problems, iteratively making, anticipating efficiency based on knowledge of the layout, keeping track of performance, and adjusting styles to fulfill the declared objectives. It improves the staminas and history of reclamation method. Its distinct function is the marital relationship of landforms, substrates, and vegetation throughout all stages of layout and building and construction, which formerly have actually been kept as different disciplines. Though landscape engineering personifies all aspects of conventional design (preparation, examination, design, building and construction, operation, evaluation, study, monitoring, and training), it is concentrated on three main locations. The initial is closure preparation –-- which includes goal setting and design of the landscape all at once. The 2nd division is landscape layout more concentrated on the style of individual landforms to dependably meet the goals as laid out in the closure planning procedure. Landscape efficiency evaluation is vital to both of these, and is additionally essential for approximating responsibility and degrees of economic guarantee. The iterative process of planning, design, and efficiency evaluation by a multidisciplinary team is the basis of landscape design. Resource: McKenna, G. T., 2002. Sustainable mine reclamation and landscape design. PhD Thesis, College of Alberta, Edmonton, Canada 661p.
.
About Landscape ecology
Landscape ecology is the scientific research of studying and enhancing connections between eco-friendly procedures in the environment and specific ecological communities. This is done within a range of landscape scales, development spatial patterns, and business levels of research and policy. Landscape ecology can be referred to as the scientific research of "landscape diversity" as the synergetic result of biodiversity and geodiversity. As an extremely interdisciplinary area in systems scientific research, landscape ecology integrates biophysical and analytical methods with humanistic and alternative viewpoints throughout the natural sciences and social sciences. Landscapes are spatially heterogeneous geographical areas defined by diverse connecting spots or environments, ranging from fairly natural terrestrial and marine systems such as woodlands, meadows, and lakes to human-dominated atmospheres consisting of agricultural and urban setups. The most significant qualities of landscape ecology are its emphasis on the connection amongst pattern, process and scales, and its concentrate on broad-scale ecological and environmental problems. These require the combining in between biophysical and socioeconomic scientific researches. Key study subjects in landscape ecology consist of environmental flows in landscape mosaics, land use and land cover change, scaling, associating landscape pattern analysis with environmental procedures, and landscape preservation and sustainability. Landscape ecology also studies the function of human influence on landscape variety in the growth and spreading of brand-new human pathogens that can trigger epidemics.
Landscape design is an independent profession and a design and art tradition, practiced by landscape designers, combining nature and culture. In contemporary practice, landscape design bridges the space between landscape architecture and garden design.[1]
Design projects may involve two different professional roles: landscape design and landscape architecture.
Landscape design typically involves artistic composition and artisanship, horticultural finesse and expertise, and emphasis on detailed site involvement from conceptual stages through to final construction.
Landscape architecture focuses more on urban planning, city and regional parks, civic and corporate landscapes, large scale interdisciplinary projects, and delegation to contractors after completing designs.
There can be a significant overlap of talent and skill between the two roles, depending on the education, licensing, and experience of the professional. Both landscape designers and landscape architects practice landscape design.[2]
The landscape design phase consists of research, gathering ideas, and setting a plan. Design factors include objective qualities such as: climate and microclimates; topography and orientation, site drainage and groundwater recharge; municipal and resource building codes; soils and irrigation; human and vehicular access and circulation; recreational amenities (i.e., sports and water); furnishings and lighting; native plant habitat botany when present; property safety and security; construction detailing; and other measurable considerations.
Design factors also include subjective qualities such as genius loci (the special site qualities to emphasize); client's needs and preferences; desirable plants and elements to retain on site, modify, or replace, and that may be available for borrowed scenery from beyond; artistic composition from perspectives of both looking upon and observing from within; spatial development and definition – using lines, sense of scale, and balance and symmetry; plant palettes; and artistic focal points for enjoyment. There are innumerable other design factors and considerations brought to the complex process of designing a garden that is beautiful, well-functioning, and that thrives over time.
The up-and-coming practice of online landscape design allows professional landscapers to remotely design and plan sites through manipulation of two-dimensional images without ever physically visiting the location. Due to the frequent lack of non-visual, supplementary data such as soil assessments and pH tests, online landscaping necessarily must focus on incorporating only plants which are tolerant across many diverse soil conditions.
Historically, landscape designers trained by apprenticing—such as André Le Nôtre, who apprenticed with his father before designing the Gardens of Versailles—to accomplished masters in the field, with the titular name varying and reputation paramount for a career. The professional section of garden designers in Europe and the Americas went by the name "Landscape Gardener". In the 1890s, the distinct classification of landscape architect was created, with educational and licensing test requirements for using the title legally. Beatrix Farrand, the sole woman in the founding group, refused the title preferring Landscape Gardener. Matching the client and technical needs of a project, and the appropriate practitioner with talent, legal qualifications, and experienced skills, surmounts title nomenclature.[citation needed]
Institutional education in landscape design appeared in the early 20th century. Over time it became available at various levels. Ornamental horticulture programs with design components are offered at community college and universities within schools of agriculture or horticulture, with some beginning to offer garden or landscape design certificates and degrees. Departments of landscape architecture are located within university schools of architecture or environmental design, with undergraduate and graduate degrees offered. Specialties and minors are available in horticultural botany, horticulture, natural resources, landscape engineering, construction management, fine and applied arts, and landscape design history. Traditionally, hand-drawn drawings documented the design and position of features for construction, but Landscape design software is frequently used now.[citation needed]
Other routes of training are through informal apprenticeships with practicing landscape designers, landscape architects, landscape contractors, gardeners, nurseries and garden centers, and docent programs at botanical and public gardens. Since the landscape designer title does not have a college degree or licensing requirements to be used, there is a very wide range of sophistication, aesthetic talent, technical expertise, and specialty strengths to be responsibly matched with specific client and project requirements.[citation needed]
Many landscape designers have an interest and involvement with gardening, personally or professionally. Gardens are dynamic and not static after construction and planting are completed, and so in some ways are "never done". Involvement with landscape management and direction of the ongoing garden direction, evolution, and care depend on the professional's and client's needs and inclinations. As with the other interrelated landscape disciplines, there can be an overlap of services offered under the titles of landscape designer or professional gardener.[2]
Landscaping in Las Vegas can be a dream—or a disaster—depending on your approach. Here are five common mistakes to avoid when designing your desert-friendly yard.
1. Choosing the wrong plants. Not all greenery thrives in the desert. Stick to native or drought-tolerant species that can handle heat and low water.
2. Overwatering. More water doesn't mean better growth. Use drip irrigation and water during cooler hours to avoid evaporation.
3. Poor soil preparation. Las Vegas soil can be tough. Add compost and organic matter to improve drainage and plant health.
4. Ignoring the sun. Place shade-loving plants in protected areas. Full-sun spots need heat-resistant varieties to survive.
5. Skipping maintenance. Even low-maintenance yards need attention. Regular cleanup, mulching, and system checks keep your landscape looking sharp.
Avoiding these pitfalls will help you create a landscape that thrives in Las Vegas—beautiful, sustainable, and stress-free.
Creating the Perfect Low-Maintenance Landscape in Las Vegas
Living in Las Vegas comes with endless sunshine, desert beauty, and, yes—heat. While traditional lawns and gardens may struggle in this climate, low-maintenance landscaping offers an attractive, water-efficient solution that doesn’t sacrifice style.
Whether you're a homeowner looking to simplify your outdoor space or a busy professional wanting curb appeal without the upkeep, designing a low-maintenance yard in Las Vegas is all about smart planning, strategic choices, and knowing what works in the desert.
Why Go Low-Maintenance?
The truth is, Las Vegas landscapes aren’t meant for thirsty lawns or tropical plantings. A traditional yard with grass, high-water plants, and constant trimming can cost hundreds in water bills, not to mention hours of weekend labour.
Switching to a low-maintenance landscape brings several benefits:
Lower water usage (a must in drought-prone Southern Nevada)
Minimal upkeep—no mowing, fertilising, or constant trimming
More durability in extreme sun and heat
Modern aesthetic appeal that suits contemporary Las Vegas homes
Let’s look at the best strategies for creating a beautiful, low-maintenance landscape that thrives in the Vegas climate.
1. Start with Artificial Turf
One of the most popular choices in Las Vegas landscaping is artificial grass. Today’s synthetic turf looks incredibly realistic and provides the green-lawn look—without the water, mud, or mowing. It’s perfect for front yards, pet zones, and even backyard play areas.
Artificial turf lasts 15–20 years with minimal care, drains easily during rainstorms, and stays green year-round. It's also safe for kids and pets, making it an all-around winner.
2. Use Drought-Tolerant Plants
Plants can still play a major role in a low-maintenance landscape—if you choose the right ones. Native and desert-adapted plants like:
Red yucca
Desert spoon
Agave
Texas sage
Lantana
Aloe vera
These plants thrive in full sun, need very little water, and look amazing when grouped with rocks or gravel. Most of them bloom seasonally, adding pops of colour without demanding attention.
3. Incorporate Hardscaping
Hardscaping is your best friend when designing for function and beauty. Think paver patios, walkways, stone borders, gravel beds, and boulders. These elements break up space, require no maintenance, and bring texture and contrast to your yard.
Want to take it further? Add a fire pit, seating wall, or a pergola for instant outdoor-living appeal with zero watering required.
4. Say Goodbye to Sprinklers—Hello to Drip Irrigation
Traditional sprinklers waste water and often miss the mark. Drip irrigation systems deliver water directly to plant roots, saving water and keeping your landscape healthy.
They’re easy to install, nearly invisible once in place, and compatible with smart irrigation controllers that adjust based on weather conditions.
5. Choose the Right Groundcover
Ditch the mulch and grass clippings. Instead, opt for decorative gravel, crushed granite, or decomposed granite to cover bare ground. These materials don’t blow away easily, reduce weed growth, and add visual interest.
Incorporate steel or stone edging to create clean lines and keep materials in place.
6. Keep It Clean and Clutter-Free
Less is more in low-maintenance landscaping. Instead of filling every space, focus on creating breathing room with strategic planting, negative space, and simple design elements. Fewer plants mean fewer tasks, and the result often looks more elegant and intentional.
Final Thoughts
Las Vegas homeowners are discovering that beautiful landscaping doesn’t need to be high-maintenance. With the right mix of turf alternatives, native plants, and hardscaping, you can enjoy a yard that’s functional, stylish, and refreshingly easy to manage.
At Rock N Block Turf N Hardscapes, we help transform dry, unused yards into outdoor retreats that reflect your lifestyle and save you time, water, and effort. Ready to go low-maintenance in high heat? Let’s talk.
Why Artificial Turf Is the Smart Landscaping Choice in Las Vegas
Let’s face it—keeping natural grass green in Las Vegas is no easy feat. That’s why more homeowners and businesses are switching to artificial turf.
Artificial grass offers the look of a lush lawn without the hassle of watering, mowing, or fertilising. It’s a practical solution for desert climates where water is scarce and temperatures soar.
Modern turf is pet-friendly, child-safe, and comes in textures that rival real grass. It drains quickly, stays cool underfoot, and resists fading—even under intense Las Vegas sun.
Installation may cost more upfront, but the long-term savings in water bills and maintenance more than make up for it. Plus, with proper care, artificial turf can last 15–20 years.
Whether you want a clean front yard, a durable play area, or a backyard that’s always photo-ready, artificial turf is a smart, sustainable investment for Las Vegas living.